Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing.

نویسندگان

  • Huajun She
  • Rong-Rong Chen
  • Dong Liang
  • Edward V R DiBella
  • Leslie Ying
چکیده

PURPOSE To develop a sensitivity-based parallel imaging reconstruction method to reconstruct iteratively both the coil sensitivities and MR image simultaneously based on their prior information. METHODS Parallel magnetic resonance imaging reconstruction problem can be formulated as a multichannel sampling problem where solutions are sought analytically. However, the channel functions given by the coil sensitivities in parallel imaging are not known exactly and the estimation error usually leads to artifacts. In this study, we propose a new reconstruction algorithm, termed Sparse BLind Iterative Parallel, for blind iterative parallel imaging reconstruction using compressed sensing. The proposed algorithm reconstructs both the sensitivity functions and the image simultaneously from undersampled data. It enforces the sparseness constraint in the image as done in compressed sensing, but is different from compressed sensing in that the sensing matrix is unknown and additional constraint is enforced on the sensitivities as well. Both phantom and in vivo imaging experiments were carried out with retrospective undersampling to evaluate the performance of the proposed method. RESULTS Experiments show improvement in Sparse BLind Iterative Parallel reconstruction when compared with Sparse SENSE, JSENSE, IRGN-TV, and L1-SPIRiT reconstructions with the same number of measurements. CONCLUSION The proposed Sparse BLind Iterative Parallel algorithm reduces the reconstruction errors when compared to the state-of-the-art parallel imaging methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse BLIP: Compressed Sensing with Blind Iterative Parallel Imaging

Huajun She, Rong-Rong Chen, Dong Liang, Edward DiBella, and Leslie Ying Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, United States, Shenzhen Institutes of Advanced Technology, Shenzhen, China, People's Republic of, Department of Electrical Engineering and Computer Science, University of Wisconsin, Milwaukee, WI, United States, Department of Radiol...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Efficient Blind Compressed Sensing Using Sparsifying Transforms with Convergence Guarantees and Application to MRI

Natural signals and images are well-known to be approximately sparse in transform domains such as Wavelets and DCT. This property has been heavily exploited in various applications in image processing and medical imaging. Compressed sensing exploits the sparsity of images or image patches in a transform domain or synthesis dictionary to reconstruct images from undersampled measurements. In this...

متن کامل

Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI.

PURPOSE To develop a fast and flexible free-breathing dynamic volumetric MRI technique, iterative Golden-angle RAdial Sparse Parallel MRI (iGRASP), that combines compressed sensing, parallel imaging, and golden-angle radial sampling. METHODS Radial k-space data are acquired continuously using the golden-angle scheme and sorted into time series by grouping an arbitrary number of consecutive sp...

متن کامل

Improved Compressed Sensing-Based Algorithm for Sparse-View CT Image Reconstruction

In computed tomography (CT), there are many situations where reconstruction has to be performed with sparse-view data. In sparse-view CT imaging, strong streak artifacts may appear in conventionally reconstructed images due to limited sampling rate that compromises image quality. Compressed sensing (CS) algorithm has shown potential to accurately recover images from highly undersampled data. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 71 2  شماره 

صفحات  -

تاریخ انتشار 2014